
itworldcanada.com

Understanding Cybersecurity
Management in DeFi (UCM-DeFi) –
Smart Contracts and DeFi Security
and Threats (Article 5) - IT World
Canada

Sepideh HajiHosseinKhani and Arash Habibi Lashkari

20-25 minutes

Smart contracts have transformed how legal agreements are

managed and carried out, but they come with their own share of

potential flaws and security risks. These shortcomings make smart

contracts susceptible to hacking, which can lead to substantial

financial losses. For instance, security weaknesses in smart

contracts can be manipulated to illicitly extract funds. A

considerable number of attacks target smart contracts relative to

other layers and components. For example, in 2016, DAO was

victim of an attacker who manipulated a smart contract bug to

repeatedly siphon funds, leading to an approximately US$50

million cryptocurrency loss for investors.

Understanding Cybersecurity Management in DeFi (UCM-DeFi), a

five-article series, aims to discuss decentralized finance and

explore a range of cybersecurity issues that impact DeFi and

blockchain-based financial solutions. The articles in this series are

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

1 of 17 7/17/2023, 10:42 PM

https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5/542461
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5/542461
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

based on the recent book titled Understanding Cybersecurity

Management for DeFi, published by Springer this year. This fifth

and last article discusses significant smart contract vulnerabilities

and risks that pose serious challenges for their creators. We’ll also

cover a few attack scenario examples to demonstrate the very real

nature of these threats. Continue reading to learn more about

these vulnerabilities, and the strategies to prevent smart contract

security issues.

The previous four articles in this series are available here:

Understanding Cybersecurity Management in DeFi (UCM-DeFi) –

The Origin of Modern Decentralized Finance (Article 1)

Understanding Cybersecurity Management in DeFi (UCM-DeFi) –

Introduction to Smart Contracts and DeFi (Article 2)

Understanding Cybersecurity Management in DeFi (UCM-DeFi) –

DeFi Platforms (Article 3)

Understanding Cybersecurity Management in DeFi (UCM-DeFi) –

Blockchain Security (Article 4)

Contents

1. Arithmetic Bugs. 3

2. Re-entrancy Attack. 3

3. Race Conditions. 5

4. Unhandled Exceptions. 5

5. Using a Weak Random Generator 6

6. Timestamp Dependency. 6

7. Transaction-Ordering Dependence and Front Running. 7

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

2 of 17 7/17/2023, 10:42 PM

mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
mailto:https://link.springer.com/book/10.1007/978-3-031-23340-1
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-the-origin-of-modern-decentralized-finance-article-1/533357
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-the-origin-of-modern-decentralized-finance-article-1/533357
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-the-origin-of-modern-decentralized-finance-article-1/533357
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-the-origin-of-modern-decentralized-finance-article-1/533357
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-introduction-to-smart-contracts-and-defi-article-2/536621
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-introduction-to-smart-contracts-and-defi-article-2/536621
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-introduction-to-smart-contracts-and-defi-article-2/536621
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-introduction-to-smart-contracts-and-defi-article-2/536621
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-defi-platforms-article-3/537847
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-defi-platforms-article-3/537847
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-defi-platforms-article-3/537847
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-defi-platforms-article-3/537847
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-blockchain-security-article-4/540075
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-blockchain-security-article-4/540075
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-blockchain-security-article-4/540075
https://www.itworldcanada.com/blog/understanding-cybersecurity-management-in-defi-ucm-defi-blockchain-security-article-4/540075
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535496
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535496
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535497
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535497
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535498
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535498
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535499
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535499
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535500
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535500
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535501
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535501
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535502
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535502

8. Vulnerable Libraries. 7

9. Wrong Initial Assumptions. 8

10. Denial of Service. 8

11. Flash Loan Attacks. 9

12. Vampire Attacks. 10

13. Minimal Extractable Volume (MEV) 10

14. Final Thoughts. 11

1. Arithmetic Bugs

Arithmetic bugs in smart contracts occur during arithmetic

operations on integers, including situations like overflow,

underflow, and division by zero. In overflow, a value exceeds the

integer limit, while underflow happens when a value is smaller than

the integer boundary. These operations involve both positive and

negative integers.

In most programming languages, when an arithmetic operation

exceeds the upper limit (boundary) of what an integer data type

can store, it results in an exception or error. This situation is

typically considered an “out-of-bounds” behavior. However,

Ethereum precisely defines such behaviors due to the Ethereum

Virtual Machine’s support for modulo 2^256 arithmetic. Essentially,

instead of creating an error, operations that exceed this boundary

“wrap around” because of this modulo operation.

In the context of division, most programming languages would

throw an error when you attempt to divide any number by zero.

However, EVM behaves differently; it simply results in zero. These

peculiarities of the EVM can lead to arithmetic bugs.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

3 of 17 7/17/2023, 10:42 PM

about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535503
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535503
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535504
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535504
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535505
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535505
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535506
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535506
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535507
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535507
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535508
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535508
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535509
about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblog%2Funderstanding-cybersecurity-management-in-defi-ucm-defi-smart-contracts-and-defi-security-and-threats-article-5%2F542461#_Toc139535509

For clarity, consider a simple example – an Ethereum smart

contract has a fixed size incremented by 8 bits. The maximum

number from this combination is 2^8 (256), ranging from 0 to 255.

Adding 1 to the maximum value causes an overflow, and adding -1

to the minimum causes an underflow.

In later versions of Solidity (>0.4.0), the compiler introduces a

feature where certain operations would indeed trigger exceptions.

When an exception is triggered, all changes made in the current

call (and any calls it made) are reversed, providing a mechanism

to handle these situations.

2. Re-entrancy Attack

Re-entrancy attacks pose a serious threat to smart contracts. In

such attacks, a contract (A) calls another contract (B), which in

turn calls back contract A, all within a single transaction. Notably,

contract B is external to the blockchain. This sequence, known as

legitimate re-entrancy, is common in contract execution.

For example, contract A asks contract B to withdraw a certain

amount of money. Contract B follows this instruction and sends the

funds to contract A’s account using a callback or fallback function.

In Ethereum, transferring Ether happens via function calls. Hence,

contract B calls back contract A to fulfill the instruction.

In a malicious re-entrancy or re-entrancy attack, a contract

operates on an inconsistent internal state due to unexpected

calling. For instance, a contract executes a control flow based on

the victim contract’s internal state. The internal state gets updated

only after the external call returns, leaving the contract in an

inconsistent state.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

4 of 17 7/17/2023, 10:42 PM

To elaborate, a procedure is re-entrant if its execution can be

paused and restarted, and both instances run without errors. This

characteristic can result in severe vulnerabilities for smart

contracts. The DAO hack is a notable example.

Consider a victim contract with a withdrawal function. This function

checks whether a calling contract can withdraw an amount. If so, it

transfers the specified sum to the calling contract and updates the

internal state. A malicious contract can exploit this by calling the

victim contract to withdraw again before the internal state is

updated. This situation results in multiple withdrawals before the

state gets updated.

Here’s how a step-by-step re-entrancy attack might occur:

1. The proxy contract requests a withdrawal.

2. The victim contract’s transfer to the proxy contract triggers the

fallback function.

3. The proxy contract asks for another withdrawal.

4. The victim contract’s transfer to the proxy contract again triggers

the fallback function.

5. This process repeats without updating the balance or throwing an

exception unless the transfer fails.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

5 of 17 7/17/2023, 10:42 PM

https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure01.png
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure01.png

3. Race Conditions

Race conditions arise due to a lack of synchronization in

transactions within Solidity and Ethereum smart contracts. A

common instance of potential race conditions can be found in the

ERC20 standard, which outlines the APIs used in smart contracts.

To illustrate, consider two users, A and B. A wants to allow B to

withdraw 10 tokens from A’s wallet as payment for a smart contract

code developed by B. Assume B successfully negotiates a bonus

of 5 tokens for excellent work, totaling 15 tokens. However, before

A can send the approved 15 tokens, B initiates a transfer function

to withdraw the original 10 tokens. Later, B receives approval for

and obtains the additional 15 tokens, resulting in a total of 25

tokens.

This situation, known as a double withdrawal exploit, arises from

race conditions and a lack of synchronization. It’s noteworthy that

re-entrancy attacks are also a type of race condition attack.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

6 of 17 7/17/2023, 10:42 PM

https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure01.png
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure01.png
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure02.png
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure02.png

To avoid such circumstances, it’s advised that token owners reset

token allowances to zero before defining a new value. This

mitigates the risk of exploitation by taking advantage of race

conditions in the ERC20 standard.

4. Unhandled Exceptions

Unhandled exceptions pose a vulnerability in smart contracts,

arising in various ways and potentially anywhere within the

contract, such as within a loop or a function. Exception handling is

critical because errors might not propagate across the call-stack,

although this can be dependent on the specific features of the

target function. External exceptions in a loop can even pave the

way for denial-of-service attacks.

Different smart contract platforms manage exceptions in unique

ways. For instance, Solidity has two methods for handling

exceptions:

• By directly referencing the callee’s contract instance or using the

transfer() function, in which case the exception is escalated, and

the entire transaction is reverted. Given transactions are atomic,

reversing the entire transaction is a primary safety measure.

• When employing one of the four low-level methods, namely call,

staticcall, delegatecall, and send, only a false value is returned to

the calling contract in case of an exception. This nuanced

difference in response helps maintain the security of the overall

smart contract ecosystem.

5. Using a Weak Random Generator

Random number generation is essential in computer science for

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

7 of 17 7/17/2023, 10:42 PM

various applications, including deciding winners in games.

However, generating a random number in a deterministic

environment like Ethereum can be challenging. Solidity does

provide a function, blockhash(uint blockNumber), which generates

a ‘0’ when blockNumber is more than 256.

Time-dependent functions are used in smart contracts for

synchronization or to block transactions, such as timestamps,

block numbers, gas limits, and coinbase. Despite this, some

experts advise against using generated random numbers for

making crucial decisions, due to their inherent entropy or

randomness. Pseudo random number generators (PRNG) can

produce weak random numbers which, if used to determine an

important contract state, can be misused by attackers to multiply

their wins within a winning block.

To prevent these exploitations, the source of randomness, or

entropy, should be external to the blockchain. One potential

solution could involve changing the trust model to a group of

participants or a centralized entity, which could serve as a

randomness oracle.

6. Timestamp Dependency

Timestamp dependency is a critical feature of the Ethereum Virtual

Machine, often used for transaction synchronization in smart

contracts over random number generators. However, this

dependency doesn’t offer any information about the environment,

such as the host operating system, IP address, or time, which can

be derived from the timestamp field in a block’s metadata.

Regrettably, this field can be manipulated as the block miner can

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

8 of 17 7/17/2023, 10:42 PM

insert any timestamp without verification from other network

nodes.

This malleability can lead to malicious attacks. For instance,

miners can tamper with environment variables to gain profits.

Consider a lottery system distributing prizes based on a

manipulable function. Suppose a variable determining the winner

produces an even or odd number. A miner could adjust the

timestamp to their advantage, such as altering it to their local time

when the block was created.

Generally, a contract can withstand a 30-second variance and still

preserve its integrity. But, the potential for manipulation is more

significant if a malicious miner tweaks crucial blockchain

components leading to substantial impact.

In such cases, using random numbers to decide outcomes might

be preferred. Nevertheless, random numbers aren’t a complete

substitute for timestamp dependency due to the latter’s

synchronization advantages.

7. Transaction-Ordering Dependence and Front

Running

Transaction-ordering attacks are a type of race condition attack

that exploits the miner-determined order of transaction processing

in Ethereum. These attacks occur when malicious miners

manipulate the transaction order to prioritize their transactions,

leaving legitimate transactions in a pending state.

For instance, imagine a smart contract rewards the first correct

answer to a problem. Alice solves the problem and submits her

answer with a standard gas price. Bob sees her answer and

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

9 of 17 7/17/2023, 10:42 PM

submits the same answer but with a higher gas price. If Bob’s

transaction is processed first, he’ll receive the reward, leaving

Alice empty-handed, despite being the original solver.

One way to prevent this type of attack is by using the commit-

reveal hash scheme. In this scheme, instead of directly submitting

the answer, the solver submits the hash of the answer, which is

uninterpretable to others. The contract then stores the hash along

with the user’s address. To claim the reward, the solver must

submit the answer, address, and a unique number (salt), which,

when hashed, should match the previously stored hash. If a match

is found, the reward goes to the claimant.

8. Vulnerable Libraries

Libraries in smart contracts provide reusable functionalities, such

as data structures and token contract interfaces. However, they

carry inherent security risks. If a library is vulnerable and multiple

smart contracts use it, the vulnerability will affect all these

contracts. Furthermore, once deployed, a library can’t be patched,

and many client contracts lack versioning capabilities, preventing a

vulnerable library from being updated.

One prominent example of library vulnerability is the 2017 Parity

multi-signature wallet hacks, where a vulnerability allowed

unauthorized transfer of funds.

The primary source of library vulnerabilities is their statefulness. If

libraries were stateless, only the state of the client contracts would

change when a library is called, reducing the potential for

vulnerabilities.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

10 of 17 7/17/2023, 10:42 PM

https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7

9. Wrong Initial Assumptions

Incorrect initial assumptions in contract logic often lead to

unexpected outcomes. For example, a contract may change a

transaction’s state based on the received funds. If the funds are

below a threshold, the code executes; if not, the transaction

reverts.

In the following code snippet, the condition checks whether the

total received funds are greater than or equal to the contract

balance. If true, the code executes; if not, an exception is thrown.

“`

function()

{

 require(ActiveSale);

 fundRaised = fundRaised.add(msg.value);

 require(fundRaised >= this.balance);

 …

}

“`

However, if the contract owner mistakenly assumes the contract

balance will always be greater than or equal to the received funds,

it will consistently throw an exception regardless of other factors.

This highlights the critical importance of correct assumptions in

smart contract programming.

10. Denial of Service

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

11 of 17 7/17/2023, 10:42 PM

Denial of Service (DoS) attacks are designed to prevent legitimate

users from accessing or using smart contracts, either temporarily

or indefinitely. Within a blockchain context, there are three primary

types of DoS attacks:

1. Unexpected Revert

In this type of attack, a smart contract allows a user to place a bid.

If a higher bid comes in, the contract refunds the previous bid.

However, the attack exploits the contract by causing unexpected

reverts when higher bids are received. This vulnerability often

stems from inadequate exception handling within conditional and

iterative statements.

To mitigate the impact of this vulnerability, external calls initiated by

the callee contract should be placed within separate transactions.

2. Block Gas Limit

This attack occurs when a transaction exceeds the maximum

available gas limit, resulting in transaction failure. If this happens

during a refund process, it halts execution and the refunds become

stuck indefinitely.

An attacker can engineer this situation by using a loop that

continuously increments a variable without checking the upper limit

for that variable’s value. In the worst-case scenario, the transaction

is permanently blocked, preventing additional transactions.

3. Block Stuffing

In a block stuffing attack, an attacker fills multiple blocks in the

blockchain to prevent other transactions from being included in the

blocks. This is achieved when the attacker uses a high gas price

for transactions, ensuring that only their transactions are included

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

12 of 17 7/17/2023, 10:42 PM

in the blocks. An example of a block stuffing attack was seen in the

gambling app Fomo3D.

Failed External Calls

In addition to these three types, DoS attacks can occur due to

failed external calls, either accidental or deliberate. The damage

done by these calls can be minimized by isolating such calls into

their own transaction that can be initiated by the recipient of the

call. This is particularly relevant for payments where it’s better to

let users withdraw funds rather than pushing funds to them

automatically. This is known as the pull payment model.

11. Flash Loan Attacks

Flash loan attacks pose a significant risk in the world of

decentralized finance (DeFi). These attacks leverage the features

of flash loans, a unique financial instrument that allows users to

borrow substantial amounts of cryptocurrency without any

collateral as long as the loan is paid back within the same

transaction.

Attackers exploit these features by borrowing vast amounts of

funds, manipulating the price of a crypto asset on one exchange,

and then reselling it to another user for a profit. The entire process

happens very quickly, allowing the attacker to repeat it multiple

times before detection and often resulting in substantial theft of

cryptocurrency.

One of the reasons flash loan attacks are so common is because

of price discrepancies in the same asset across different DeFi

platforms. These discrepancies create an opportunity for arbitrage,

where an asset can be bought for a lower price on one platform

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

13 of 17 7/17/2023, 10:42 PM

https://ylv.io/why-fomo3d-block-stuffing-attack-is-important/
https://ylv.io/why-fomo3d-block-stuffing-attack-is-important/
https://10clouds.com/blog/defi/understanding-arbitrage-in-defi/
https://10clouds.com/blog/defi/understanding-arbitrage-in-defi/

and sold for a higher price on another.

However, mitigating these attacks is challenging for several

reasons. First, it is virtually impossible to patch all existing

vulnerabilities due to the complex nature of smart contracts.

Second, the fast pace of technological development often means

that security considerations may be overlooked. And third, once

attackers understand how the contract code operates, they can

easily manipulate it to their advantage.

To prevent flash loan attacks, several measures can be taken.

These include incorporating robust security features into the

design of DeFi platforms, deploying advanced security tools for

regular audits and anomaly detection, and using decentralized

Oracles for accurate and tamper-proof pricing information. Despite

these efforts, the battle against flash loan attacks is ongoing, with

new strategies and defenses continually being developed.

12. Vampire Attacks

A “vampire attack” in the world of smart contracts is a strategy

where one Decentralized Finance (DeFi) protocol seeks to draw

users, investors, and liquidity from another DeFi protocol by

offering improved rates or incentives. It essentially attempts to

“drain” the resources of competing protocols.

A well-known example of a vampire attack is the case of

SushiSwap. This project managed to attract over $1 billion of

liquidity in less than a week after its launch. SushiSwap did this by

forking Uniswap’s code, then launching a vampire attack. It enticed

users with its own tokens, aptly named “Sushi,” which were issued

and distributed to participants. As these tokens gained traction, the

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

14 of 17 7/17/2023, 10:42 PM

https://finematics.com/vampire-attack-sushiswap-explained/
https://finematics.com/vampire-attack-sushiswap-explained/
https://finematics.com/vampire-attack-sushiswap-explained/
https://finematics.com/vampire-attack-sushiswap-explained/

protocol siphoned off significant amounts of liquidity from Uniswap.

The final stage of the vampire attack involves migrating these

tokens from the original platform (in this case, Uniswap) to the new

platform (SushiSwap). Hence the name “vampire attack,” as it

drains the lifeblood (liquidity) from one protocol to another.

To counteract such attacks, existing DeFi protocols can implement

strategies like liquidity reservation offers, which provide additional

benefits to their users and encourage them to stay with the

existing protocol. It’s a challenge of balancing competitive rates

and incentives while ensuring the long-term sustainability of the

protocol.

13. Minimal Extractable Volume (MEV)

Maximal Extractable Value (MEV) is a measure of the maximum

profit a miner or validator can make by reordering, including, or

excluding transactions within a block. Originally known as “miner

extractable value” in the context of proof-of-work (PoW), it was

renamed to encompass a broader scope, as the process can be

controlled by anyone involved in block creation, not just miners.

In essence, MEV quantifies the financial benefit that can be gained

through transaction prioritization. Miners, incentivized by the

potential of additional revenue, aim to include transactions that

offer the highest fees. This allows them to extract value beyond the

standard block rewards and gas fees. However, it’s not just miners

who exploit this mechanism; network participants, often called

“searchers,” also utilize complex algorithms or automated bots to

identify profitable transaction opportunities within the blockchain.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

15 of 17 7/17/2023, 10:42 PM

https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure03.png
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure03.png

While MEV has led to increased utilization of blockchains,

attracting participants willing to pay higher gas fees, it also has

downsides. High-volume trading, for example, can lead to network

congestion, negatively affecting user experience. Common

examples of MEV opportunities include decentralized exchanges

(DEX), liquidations, and sandwich trading.

Preventing or mitigating the effects of MEV is a complex issue in

blockchain protocol design and is a topic of ongoing research in

the field.

14. Final Thoughts

The article outlines numerous crucial vulnerabilities and threats in

smart contracts that present significant challenges to security

experts, designers, and developers. These vulnerabilities can be

grouped into categories such as inherent issues, owner’s errors,

and unhandled problems.

Common vulnerabilities like arithmetic bugs and re-entrancy

attacks have caused significant damage in the past, while others,

like race conditions, are inherent in the smart contract standard

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

16 of 17 7/17/2023, 10:42 PM

https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure03.png
https://i.itworldcanada.com/wp-content/uploads/2023/07/Article05-Figure03.png

itself. Faulty initial assumptions often result from contract owners’

mistakes. Additionally, there are vulnerabilities that cannot be

remedied by designers due to the lack of versioning support in

DeFi platforms.

It’s crucial to understand and address these vulnerabilities to

ensure the safety and efficiency of smart contracts, thereby

fostering a more secure and reliable environment for blockchain

technology.

Understanding Cybersecurity Management in DeFi (UCM-DeFi) – Sma... about:reader?url=https%3A%2F%2Fwww.itworldcanada.com%2Fblo...

17 of 17 7/17/2023, 10:42 PM

